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MEASUREMENT AND ANALYSIS OF MEMORY CONFLICTS ON VECTOR
MULTIPROCESSORS

D. A. Calahana and D. H. Baileyb AFOgTft- 87- 1 601

Abstract: The memory organization and technological design
parameters which create memory access conflicts and affect
performance of the CRAY family of processors are studied.
Measurements on the dynamic-memory CRAY-2 system are presented.

1. INTRODUCTION

The literature of the 1960's and 1970's appeared to solve the

multiprocessor (MP) memory conflict problem with the design of

conflict-free memories. The real evolutionary world of scientific

computers in the last decade, however, made only modest use of this

theory, for the following reasons.

1. The fast clock periods of the early scientific

multiprocessors mandated against use of extensive conflict-

resolution hardware in favor of simpler designs. It was deemed

better to let conflicts occur, detect their occurrence, and then

*resolve them heuristically on-the-fly.

2. The low-parallelism (2 or 4) did not match the previous

theoretical models nor require their intricate solution.

3. Initial conflict-free models dealt only with regular

(vector) accessing, whereas early scientific processors were

required to prove their worth with scalar accesses.

4. The use of slow massive dynamic memories as with the CRAY-2

(abbr. C-2) introduced a new - and sometimes dominant - source of

delay, namely, the chip cycle time (bank reservation time). Thus, it

would be unimportant that an access reached a chip through a clever

routing if the chip were still recovering from the last access and

so unavailable. This problem was exacerbated by the technology push

for faster cycle time, since all events are denominated in clock

a Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI, 48109. This investigtor was supported by the NAS
Projects Office and the Air Force Office of Scientific Research under Grant AF
84-0096
b NAS Projects Office, NASA Ames Research Center, Moffett Field, CA, 94035.
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periods (cps).
This chapter therefore does not speak to the avoidance of

conflicts in a massively-parallel system (see (l]) but rather to the

techniques of measurement and analysis related to conflicts in the

CRAY family of multiprocessors.

2. MOTIVATION: CRAY-2 BENCHMARK STUDIES

Although the CRAY X-MP (abbr. X-MP) memory conflict resolution

system poses some interesting theoretical design problems (see

below), the overall machine performance is only marginally affected

by conflicts. In contrast, the C-2 appears to suffer considerable

performance loss because of memory conflicts. This is chiefly due
to relatively slow dynamic RAM chips the C-2 employs

Some examples of this slowdown on some actual Fortran test codes

are shown in Table 1. The column headed One-Processor Stand-Alone

gives the performance rate of a program in millions of floating-

point operations per second (MFLOPS) when run on one processor with

the other three processors idle. The column headed Four Processor

Simultaneous gives the average performance rate of four copies of a

program simultaneously run on the four processors. The column

headed One Processor Normal gives the performance rate of the

program run on one processor with a normal background of jobs

running on the other three processors. The column headed Percent

Reduction is based on the first and third columns of figures. These

runs were performed on the NAS C-2.

The performance rates show that all of the test codes suffer some

performance loss when run in a normal busy environment as compared

to stand-alone. Three of the programs suffered a slowdown of over

thirty percent, or, equivalently, more than one of the four C-2

processors.

The above were complete codes and not chosen for their conflict

sensitivity characteristics (see Table 3 for larger degradations!)

Clearly, the origin of such poor performance - first evident on

commercial processors in the C-2 - justifies further study.

DI t r b teI n/

/ v!' ~ Avntlabllty &odesK ~X'?1 ~Avail and/or
Olt Special

A:V



3. ANALYSIS: THEORETICAL AND SIMULATION STUDIES

3.1. Introduction

Theoretical studies associated with CRAY memory systems have

focused on (1) memory-organization-induced delays and (2)

technology-induced delays at the chip level. This distinction

roughly corresponds to studies of the X-MP, about which information

has been disclosed [2), and studies related to the C-2, a more

complicated memory system about which no correspondingly-detailed

public-domain description is available and with conflicts largely

determined by slow memory chips. For example, the memory bank

reservation time - the clock periods for a chip to recover from an

access - is approximately 57 cp on the NAS C-2 and 4 cp for the X-

MP.

3.2. Effects of Memory Organization: The X-MP

3.2.1. Introduction

An X-MP memory organization pertinent to conflict resolution is

illustrated in Figure 1 (see [2]). To reduce interconnections, a

time-hardware tradeoff is made by requiring accesses from ports of

the same processor (up to three) to survive a section (or line)

conflict before being passed to the bank level for further conflict

resolution against accesses from other processors. The following

study considers conflicts which involve collisions at the section

level; interprocessor bank conflict resolution is more heuristic and

is mentioned in [2].

The critical design issue is the periodic manner in which the

sections are connected to the banks. Specifically, if the number of

sections is NS and the number of banks associated with the same

section is NBPS, then X-MP bank number BN is connected to section

number SN - mod (BN/NBPS, NS). Figure 1 depicts the connection for

NS=4 and NBPS-I.

The design criteria of reducing access conflicts is represented

in the literature by studies of steady-state vector access delay

(2](3](4](5] and hA tjJi vector access delay (6][7](8. Both

analyses assume that ties between conflicting accesses are resolved

at the section level by a priority that is usually determined by the

3



time of vector access instruction issue, so that an ongoing vector

access has priority.

3.2.2 Steady-state Delay

An important class of steady-state vector conflicts is the 2-port

linked nnflint shown in Figure 2, where the section conflict

resonates with the bank reservation time (=4 cps) to produce a 25%

decrease in accessing rate. As described in (2], at cp=l ports A and

B place their initial requests for banks 0 and 3, respectively.

Both are granted, so section 0 is reserved by A for 1 cp, and

section 3 is reserved for port B. In addition, bank 0 is reserved by

A and bank 3 is reserved for by port B, each for four cps. During

cp-2 and cp=3, there are no conflicts. At cp=4, port A requests bank

3, which is still reserved for port B, so that port A must wait. At

cp=5, bank 3 becomes available so port A gets it together with

section 3 because port A has higher priority. At cp=5, port B needs

bank 7 and section 3, but it must wait one cp for the section.

Because of this delay, port B has bank 7 when A requests it at cp=9,
and the cycle continues. As the figure shows, a steady-state delay

of 1 cp is incurred every four cps.

In [2] 3) [41and[5], other forms of steady-state delays are

studied. It is shown that the above example occurs because the

number of sections is equal to the bank reservation time (4 cps),

and the conditions for avoiding such resonance are given.

Simulation studies in these reference using random accessing have

shown the net effect on average access delay of this and similar

steady-state delays (2].

3.2.3 Transient Response: Vector Startup Delays

The startup behavior of the conflict process is important for two

reasons.

1. The number of vector startups is inversely related to the

maximum vector length, which is short (-64) for the CRAYs.

2. Collisions necessarily result in restarts, producing

startup-like delays.

In this analysis, an infinite-bank memory will be assumed, so that

the probability of accesses in neighboring banks from the same

*processor (as in Figure 2) will be zero. Delays will be due solely

4
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to coupling between the periodic section numbering. The

relationship between the memory organization (NS and NBPS) and the

average startup delay may be determined by enumeration; i.e., all

possible relative locations between ongoing accesses and an

initiating access are considered equally likely and each produces a

distinctive delay in the initiating access. These startups are

summed and an average startup delay determined. Enumeration is

feasible due to the periodicity of the section numbering.

The results are shown in Table 2, depending on whether two or

three ports are active; e.g., a three-port access assumes two ports

are in a conflict-free accessing mode when a third access is

initiated. In either case, it is shown that the original X-MP

design (X-MP 24), with NBPS=l and NS=4, produces significantly less

startup delay than the later design (X-MP 48), with NBPS=4 and NS=4.

A similar vector restart analysis produces a result which also

favors the X-MP 24 design.

From the above analyses, it is clear that steady-state and

transient characteristics are improved by different memory designs.

Relative to future X-MP designs, it may be argued that, with the

vector length fixed at 64 and with the number of banks increasing as

more processors are added, the opportunities for neighboring linked

conflicts from the same processor decrease; in contrast, startup

conflicts result from a periodic section numbering, and are thus

largely by changing but a large but finite number of banks. For

this reason, it is conjectured that startup phenomena will be the

more important consideration in future X-MP designs. Timing

simulations involving complete programs appear to corroborate this

contention [6](7].

3.3.Effects of Technology: The C-2

At the bank level, conflict resolution of a multiprocessor vector

computer system may be approximately modeled using a relatively

simple Markov chain model, relating only the number of banks and the

bank reservation time. While such a model cannot precisely describe

the phenomenon of memory bank contention in a real vector computer,

it does serve as a good introduction to the problem, and in fact

5



some quantitative conclusions can be drawn from this simple model

that do carry over to more realistic models.

In order to facilitate analysis, certain simplifying assumptions
will be made. It will be assumed that the computer system being

modeled has m CPUs and n banks of interleaved memory (i.e.,

successive data words are in successive memory banks). It will be

assumed that the cycle time for a complete memory access is t CPU

ticks. In particular, it will be assumed that whenever one of the

CPUs initiates an access to a word of memory (either to store or

recall), a reservation of t ticks is placed on the bank containing

that word. This means that for the next t system ticks, any CPU

wishing to initiate an access to a word in that bank of memory must

wait before it may begin. Once a CPU has initiated a memory fetch

or store, it is free to initiate another at the next CPU clock

period. Note that a single CPU may be simultaneously in the process

of accessing up to t separate memory banks, provided no bank busy

conflicts are encountered.

At each system clock tick, it will be assumed that each CPU that

is not waiting tosses a coin with probability of heads equal to q,

and attempts to initiate a memory access (from a memory bank chosen

at random) if the coin turns up heads. It will be assumed that when

a CPU attempts to access to a bank that is busy from a prior

reservation, the remaining reservation on that bank is uniformly

distributed between 1 and t. The case where more than one CPU is

waiting to access a single reserved bank will be ignored in this

Markov model. A final approximating assumption is that the fraction

of memory banks that are busy at any time is approximately a

constant x. Such an assumption may be made assuming that the

process has achieved a steady state.

It should be mentioned that in real vector computer operation, a

CPU is typically either attempting to access memory cells every

tick, as part of a long vector fetch or store, or else ''crunching''
and not attempting to access memory at all. Further, most memory

accesses are from consecutive memory banks, instead of from randomly

chosen memory banks. This last deviation appears to be the most

serious in the model. By comparison, the assumption that no more



than one CPU is queued waiting to access a single busy bank does not

appear to be a serious limitation, based on the results of empirical

simulations.

The operation of each CPU may now be approximately modeled by a

Markov chain on the t + 1 states so , Sl . s2 , ..., st - Here so

denotes the free state and sk denotes the state of waiting for a

bank that has a reservation of k ticks remaining. Let T denote the

Markov transition matrix for this model (i.e., Tij is the

probability that the next state is j, given that the current state

is i). Then T may be written as

1 - qx qx/t qx/t ... qx/t qx/t

1 0 0 ... 0 0

0 1 0 ... 0 0

0 0 1 0 0

0 0 0 ... 0

It may easily be verified that the Markov chain described by this

transition matrix is a regular (ergodic) process. This means that

the a priori probability of any state is equal to the limiting

frequency of appearance of that state (for almost every sample

sequence). Let p = (po , pl , P2 , ... , Pt ) denote the vector of a

priori probabilities of the t + 1 states. These probabilities may

be determined from the relationship p T = p. This equivalence

yields the linear system of equations

P0 (1 - q x) + Pl - Pa

po q x /t + P2 - P1

po q x /t + P3 - P2

pa q x / t + Pt -P(t-l

p q x /t Pt

7



When combined with the fact that the probabilities Pk must sum

to one, the solution is easily found to be

p0 = 1 / (1 + q x (t + 1) / 2 1

P = q x / [I + q x (t + 1) / 2]

P2 = q x (t - 1) / [t (I + q x (t + 1) / 2)]

Pt-i 2 q x / [t (1 + qx (t + I) / 2)]

Pt q x / Ct (1 + qx (t + 1) / 2)]

Since it was assumed that the fraction x of banks that are in a

reservation cycle is constant, the expected number of banks

initially reserved at any instant must equal the number whose

reservation expires at that instant. This can be expressed by the

relation

q m pG = n x / t

where it is assumed that at each time 1/t of the busy banks are

freed. This relation combined with the above yields the solution

sqrt {I + 2 m q 2 t (t + 1) / n} - 1

-----------------------------------------

q (t + 1)

so that

2

Pa -

1 + sqrt (1 + 2 m q 2 t (t + 1) / n}

The remaining Pk can be similarly calculated.

r Irvlv.r p' A, or V - T -



Now that the probability vector p has been found, a memory

efficiency statistic may be calculated. Let E denote the ratio of

the expected number of memory accesses divided by the sum of this

figure and the expected number of CPU ticks spent in wait states.

This efficiency statistic can be written as

E = q po / (q po + - pO)

2 q

2 q - 1 + sqrt {1 + 2 m q 2 t (t + 1) / n}

This formula for the efficiency statistic does not, unfortunately,

agree closely with most actual vector supercomputer operation. The

main problem appears to be, as mentioned above, that most vector

computer memory accesses are from consecutive banks (or at least

from banks differing by some constant stride) instead of from

randomly chosen banks. The term stride here refers to the increment

in memory between successive elements in a vector fetch or store.

Only in the case where a computer is running programs with

uncorrelated nonunit strides does this formula closely agree with

actual memory performance.

In spite of these limitations, the above formula does contain

implicit relationships between the number of processors, the number

of banks, and the bank reservation time that do carry over, to more

realistic models. First of all, one can conclude from this formula

that if the number of processors m is increased by a factor k, then

the number of banks n must also be increased by a factor k to

preserve the same level of efficiency. Secondly, if the bank

reservation time t is increased by a factor k, then the number of

banks must be increased by a factor of about k2 to maintain the same

memory efficiency.
4%

Sophisticated models can be formulated that more accurately model

a real multiprocessor vector computer system. One such advanced

model will now be presented and briefly studied. For complete

details, see [10].

9 4.
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Above it was assumed that each free CPU tosses a coin with a

certain probability and attempts to access a single randomly chosen

memory bank if the coin turns up heads. In the following it will be

assumed that each free CPU instead initiates a vector access (fetch

or store) of a certain length if its coin turns up heads (which

occurs with probability r). The starting bank number for this

vector access is assumed chosen at random, but thereafter the bank

number advances with some constant stride through the duration of

the vector access. The length of the vector access is assumed

chosen at random according to a distribution that is uniform on the

set (1, 2, ..., V}, except that a specified larger fraction V of the

vector lengths have the maximum value V. Similarly, the memory

stride is assumed to be chosen from a uniform distribution on the

set {i, 2, ..., n}, except that a certain specified larger fraction

s of the strides are 1. As in the Markov chain model, it will be

assumed that a reservation of t ticks is placed on any memory bank

once a CPU initiates a memory access. Unlike the Markov chain

model, this model will not ignore the case where two or more CPUs

are waiting to access the same memory bank -- it will be assumed

that the CPUs merely take turns until all accesses have been

completed. Observe that if no conflicts are encountered, a single

CPU can be simultaneously accessing up to t separate memory banks.

Unfortunately, it does not appear to obtain analytic solutions

using Markov techniques as above for such a model. Such models can,

however, be investigated using Monte-Carlo simulation methods.

Various assumptions of the above parameters were simulated for one

million CPU ticks, enough to insure that empirical statistics are

aw-curate to within one or two percent.

Several plots displaying important simulation results are shown

on the next page. Except where indicated otherwise, these results

are for the case n =256, m = 4, V = 128, R = 1/r = 100, t = 40, v =

0.75, s - 0.75. These parameters were chosen for a "generic" vector

computer, roughly a composite of a number of current and projected

supercomputers.

Figure 3 shows how the memory efficiency E decreases as the

reservation time t increases. The four separate curves represent
10



results for various numbers of CPUs. Figure 4 shows how efficiency

increases as the fraction s of unit stride varies from zero to one.

Each curve in this figure represents results for different

reservation times. Figure 5 shows how efficiency decreases with

large numbers of processors. The four curves on this figure are for

different numbers of banks. Figures 6 and 7 present a different

slant on the problem: with other parameters held fixed, the number

of banks necessary to preserve a constant level of memory efficiency

(75%) is shown as a function of increasing reservation time (Figure

6) and as a function of increasing numbers of processors (Figure 7).

In Figure 6 the separate curves represent results for different

numbers of banks, and in Figure 7 each curve gives results for

different reservation times.

Several definite trends can be quickly identified from these

plots. First of all, from Figure 7 it is clear that the

relationship between banks and processors is exceedingly close to

linear. To be precise, the number of banks necessary to compensate

for an increasing number of processors appears to be very closely

proportional to the number of processors minus 1. This relation,

except for the minus 1, matches the relation found in the Markov

chain analysis above. Secondly, although it is not immediately

clear from Figure 6, logarithmic regression of the simulation

results shows that the number of banks necessary to compensate for

an increase in the bank reservation time t is proportional to

approximately t1 .85. The corresponding relation from the Markov

chain analysis is t(t + 1), which is equivalent to approximately

t1 .96 over the range of the data in question. Relationships quite

close to these were also found in other cases that were run with the

simulator program.

The near-linear relationship between the number of processors and

the number of memory banks needed to preserve a tolerable level of

memory contention has been assumed for some time. However, the

near-quadratic relationship between memory bank reservation time

(measured in clock periods) and the number of memory banks is

somewhat surprising. At present, only the C-2 presents an example

of a system with a large enough memory bank reservation time that€

11 ,



these modeled results can be compared with real systems, and the

severe contention on the C-2 does appear to be roughly in accordance

with these projections. Whether or not this trend will be upheld in

other systems remains to be seen. In any event, these results

underscore the potential for truly catastrophic performance

reductions if memory bank contention is not carefully considered in

the design of a supercomputer system.

J4. EVALUATION: PERFORMANCE CHARACTERIZATION AND MEASUREMENTS

4.1. Introduction
Jp The above analysis speaks primarily to the memory system design.

However, these are not the only issues that determine conflict-

related performance degradation of algorithms in a real system. Most

of the following issues have some relevance to scalar MP processing;

all appear far more important in vector multiprocessors.

1. Algorithm sensitivity. The delay observed in an algorithm is

only partly attributable to the delay in the memory system itself.

The manner in which the algorithm reacts to such delays is equally

important. From this observation, useful measurement probes can be

constructed which have generic value across classes of vector

algorithms.

2. Performance variability. Variability of performance due to

load variations in a production environment is an issue which should

be measured and evaluated to put any other set of measurements in

context.

3. Load modeling. Heretofore undistinguished properties of the

memory loading which an algorithm encounters can significantly alter

its degradation.

4. Other system attributes. The operating system and other

hardware features can have an effect which deserves evaluation.

These topics will be considered in the following sections,

*although not necessarily delineated in the same manner.

4.2. Access and Algorithm Delays [9]

4.2.1. Definitions

Let Toi be the clock period that the ith memory vector access

instruction reserves a memory port, and let Tli be the first cp that

12



the memory port is free for a later access. Define the memory

access time as Taci = Tli - T0i. Let the conflict-free access time

be Tacfi. For a sequence of N accesses, define the average access

delay

N
Dac = (1/N) 2 (Taci - Tacfi)

i~l

and the average per cent access delay as

N

Dac% = (100/N) Z (Taci - Tacfi)/Tacfi

Similarly, let Tali and Talfi be the measured and the conflict-free

times for an algorithm to execute. For a sequence of N algorithm

executions, define the average algorithm delay

N

Dal = (1/N) X (Tali - Talfi) (1)

i=l

and the average per cent algorithm delay as

N

Dal% = (100/N) (Tali - Talfi)/Talfi

i=l

4.2.2. Sensitivity and measurement probes

Consider the ith execution of an algorithm of M vector accesses,

so that the total delay is Dt = M Dac . Then define the algorithm

sensitivity of the ith execution to access delay as

Sal = Dal/Dt

13



This sensitivity has several properties.

1. Without chaining, Sal < 1. This follows from the fact

that the effect of a memory access delay on Dal cannot be magnified

by subsequent events; however, its effect can be diminished by

algorithm insensitivity to access delays. Indeed, algorithm coding

can often be devised to reduce Sal by, for example, the prefetching

of operands or their prestorage in conflict-free local memories.

2. Of all possible algorithms with M accesses delayed by

total time M Dac, the maximum Dal is incurred by an algorithm of

vector accesses only, with Sal = 1. Such a vector code (designated

VECTOR READ or VR), with successive 64-length unit-stride accesses

initiated from banks 64 apart and instrumented to record all delays,

will be a sensitive probe used throughout this research. When

* maximum-rate accesses are made so as to constantly busy an access

path, virtually any shared-memory activity will create some delay.

Note that this does not require that a specific execution of such a

code with unspecified memory loading result in the largest Dal%,

since Dac depends on accessing patterns and attributes relative to

the other memory accesses. For example, vector accesses with

negative strides are notorious for creating large delays in a

positive-stride load environment; it is possible that fewer such

accesses could produce more delay than does YR.

Simulation shows [9] that typical code sensitivity is only mildly

dependent on the memory loading, so that using Dac = Sal Dt, the

sensitivity can be considered a constant code attribute that maps

access delays - which are architectural design objectives - into

the algorithm delays seen by the user. Unfortunately, any software

probes to measure Sal in a given code - except by simulation - risk

disturbing its value. Also, simulation has shown [7] that it can

vary widely between codes. Thus, the concept has value in

determining an upper limit in the level of certainty we can have in

predicting or explaining observed algorithm delays without detailed

knowledge of the low-level code organization.

4.3. Dynamic Analysis

Dynamic profiling with the VR test is quite useful in delineating

the impact on delay of certain architectural and run-time
14



characteristics. In this test, both (1) the individual delays of

consecutive reads and (2) a running average (Drave) - with a

averaging period equal to the memory refresh period - will be

displayed as a function of time.

Delay from a number of sources have been distinguished with such

tests applied to the C-2.

1. From memory refresh. This accounts for periodic long delays

in vector accesses at regular intervals. Figure 8 indicates delays

of nearly 400 cps in four successive vector reads at the refresh

rate of 115 cp; these delays, measured in a quiet background, are

also quite distinctive with a fully-loaded machine. The time-
average effect of these massive delays (Drave) is 3.6 cps, so that

refresh is shown to have negligible overall impact.

2. From the operating system. In the UNICOS operating system,

the operating system usually visits only a single processor, whereas

the CTSS operating systems uses a round-robin algorithm. Figure 9

depicts Drave during such a visitation during a dedicated run on the

MFECC C-2; the average delay is observed to be in the range of 15

cp, against the above-mentioned 3.6 cp background. This delay can

of course vary; the suspicion is that it will increase markedly when

I/O is being performed.

3. From user codes. Figure 10 shows the running average delay

taken during a daytime load at MFECC. The extent of variation of

the average is quite remarkable, with sustained delays of 45, 100,

and 35 cp over three regions in only 11 ms! Clearly, kernel and

other short timings made against this background will vary

significantly, a common user observation on the C-2. It is

conjectured from simulation experience that this wide variation is

caused by a nonlinear response of the delay to the amount of memory

traffic, so that small additional traffic causes a type of avalanche

or seizure effect from which memory is slow to recover; this could

in turn result from resonances in the quite complicated C-2 memory

design.

4.4. Static Analysis: Delay Distribution Functions

The impact of other architectural features can be delineated by

observing the number of delays recorded at each value of delay, or

15



the delay distribution function (DDF [9]). The effect of internal

buffers in the C-2 memory system are evident in Figure 11, where

only a discrete spectrum of delays is observed even in the mixed

load of a daytime load environment. In Figure 12, the X-MP shows a

continuous spectrum of delays; however, the effect of 1l-cp

instruction buffer fetches from another user - which can interrupt

on-going vector accesses - causes an increased number of delays at

l-cp intervals in the distribution. These peaks continue at ll-cp

intervals, representing vector accesses that encounter 2 or more

buffer fetches.

4.5. Effects of Scalar Accesses

Intuition predicted and simulation has verified that delay in a

vector access would be a function of both the number and regularity

of conflicting accesses; e.g., a 64-length vector access would be a

less disruptive load than 64 randomly-addressed scalar accesses.

Nonetheless,the large Drave produced by the operating system in

Figure 9 was felt to be uncharacteristically large, since it was

produced by a single processor executing system software that was

known to be largely scalar and so would produce modest memory

traffic. Seemingly, three processors running similar scalar

software could produce 45-cp access delays in a test code!

To investigate the effects of scalar accesses, a series of tests

were devised to include exclusively scalar and exclusively vector

loads and test codes (four test series). Figure 13 shows the model

adopted in this series. Processors P2 ,P3 , and P4 each execute

either (1) an identical LOAD CODE with known access characteristics

or (2) an idling code with no memory accesses; these are intended to

provide memory traffic for an instrumented TEST CODE run in Pl, for

which access delays were measured.

Partial results are shown in Table 3, when P2 ,P3 , and P4 each ran

identical codes; the incremental effects of idling any load

processor(s) appeared to have a linear effect on delay and will not

be displayed. Here, the SORT LOAD CODE produces one scalar access

approximately once every 50 cps, whereas the M*M matrix multiply

LOAD CODE produces nearly continual 64-length vector accesses.
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It is remarkable that, whereas the scalar TEST CODES are affected

by the large differences in the absolute number of memory accesses

of the two LOAD CODES, the vector TEST CODES are degraded equally by

the light scalar and the intense vector loads. This corroborates

the observation of significant operating system loading on the VR

test code in Figure 9.

It is clear that a memory system performance which is so severely

degraded by scalar accesses is quite undesireable. These results

have suggested the following research.

A different LOAD CODE which produces prescribed no-load vector or

scalar accessing attributes is being prepared.

A similar instrumented TEST CODE is in development. The intention

is to collect quantitative delay information relating accessing rate

and regularity of load and test codes. It is expected that various

nonlinear effects will be observed which can be identified with

memory technology and design characteristics. The ultimate goal is

to develop standardized test sequences that can be used in

simulators at the development stage to predict performance of real

codes for different memeory designs.

5. CONCLUSIONS

The CRAY-2 was designed as a research rather than commercial

machine to test the two features of fast clock time and a massive

common memory, relative to the state-of-the-art. It is therefore

likely that future machines will not suffer from the present

exaggerated memory chip cycle time that accounts for the measured C-

2 performance of this chapter. However, two issues are likely to

keep this topic on the forefront of research.

1. At the design stage there will always be a tradeoff between

memory speed and size, regardless of whether these are offered as

product choices. Thus, both the manufacturer and the user may be

well advised to develop enlightened testing procedures that predict

the impact of conflicts on user codes.

2. It should be kept in mind that the memory-processor

bandwidth of the C-2 is less than that of the X-MP, which has more

memory ports. Consequently, a decrease in bank reservation time (in
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seconds) could easily be offset by an increase in memory bandwidth

from the addition of more ports, from parallelism, or from a reduced

clock period. Thus, an adventurous future design could restore the

present criticality.
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Table 1. Examples of interprocessor contention on the C-2

Program One-Processor Four-Processor One-Proc. Percent
Name Stand-Alone Simultaneous Normal Reduction

ARC3 47.72 33.67 35.04 26.6
BL3D 46.00 42.12 40.33 12.3
F3D 33.06 27.02 27.31 17.4
INS3D 59.74 47.44 45.68 23.5
LES 93.95 66.40 60.59 35.5
MATEST 404.02 278.30 279.69 30.8
NASKERN2 98.86 63.66 66.43 32.8
PITEST 167.13 163.93 154.28 7.7

. ..
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Table 2. Startup section delays as function of the number of
sections (NS) and the number of banks per section (NBPS).

STARTUP DELAYS

2-port access 3-port access
NBPS NS (clocks) (clocks)

1 2 .5 ---
4 .25 .67 (X-MP 24)
8 .125 .28

2 2 1.5 ---
4 .75 4.2
8 .38 .86

4 2 3.5 ---
4 1.75 5.11 (X-MP 48)
8 .88 2.04

8 2 7.5 ---
4 3.75 11.2
8 1.88 4.4

16 .94 1.93
16 2 15.5 ---

4 7.75 23.5
8 3.87 9.11

16 1.93 4.15

"a'.~~~~ %~*~ I * .
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Table 3. Algorithm delay of test codes. All codes are Fortran.
Run on NAS C-2 on 5/10/86.

LOAD CODES

Scalar (SORT) Vector (M*M)

TEST CODE

Scalar

GATHER 2.6% 18.3%

SORT 3.2% 26.3%

Vector

FLUIDS KERN. 32.0% 34.7%

UNROLLED M*V 73.1% 85.6%

-A *I 'J
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Figure 1.. An X-Mp memory organization

Bank 1 Bank 5 Bank N -3
b

I p

Bank 2 Bank 6 BnN-2

p
1

pp

p 2

1/

23



Figure 2. Reservation table for a linked conflict [2]

SECTION MEMORY BANKS

CP 1 2 3 0 1 2 3 4 5 6 7 89 1 1

1 A B A B

2 B A AA BB

3 B A AAABBB

4 B AAABBBB

5 A AAABBB

6 A B AAABBB

7 B A AAABBB ""

8 B A AAAABBB -

9 B AAABBBB 

10 A AAABBB

IIA B AAABBB 

12 B A A A A B B B
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Figure 8. Effects of refresh on VR test. Measured

made on MFECC C-2 in 8/85.
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Figure 9. Effects of operating system on VR test. Measurement

made on MFECC C-2 in 8/85
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Figure 10. Effects of daytime load on VR test. Measurements
made at MFECC in 6/86.
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Figure 11. Delay Distribution Function during daytime load on C-2.
Measurement made on NAS C-2 in 6/87.
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Figure 12. Delay distribution function during daytime load on X-M?.

Measurement made on MFECC X-MP/24 in 6/87.
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Figure 13. Experimental model
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